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ABSTRACT 

The seismic resilience of highway bridges is critical to ensuring the safety and functionality of transportation networks during 

earthquakes. The quantification and distribution of seismic energy associated with seismic hazards is imperative for structural 

performance evaluation and is crucial for understanding the structural behavior until collapse. This study aims to investigate 

the seismic energy dissipation patterns, including hysteretic and damping energy, at the component and global structural level 

and assess the fragility of a reinforced concrete (RC) multi-span highway bridge. For this purpose, a high-fidelity finite element 

model was developed, and an extensive non-linear time history analysis was carried out for the given ground motion suite. The 

energy dissipation mechanisms are quantified for key bridge components, such as columns, bearings, deck unseating, and shear 

keys. The relative contribution of each component to global hysteretic and damping energy dissipation is investigated. Fragility 

curves, which establish the likelihood of different damage states for the given seismic hazard, are developed using probabilistic 

seismic demand models for the bridge components and system. Results reveal that hysteretic energy dissipation dominates the 

response of RC bridges, particularly in bearings. Damping energy exhibits a more stable response and is dominated by the 

structural mass and bearing. The fragility analysis indicates that the component with high energy dissipation is the governing 

component. Similarly, components with the least energy dissipation show reduced probabilities of exceeding critical damage 

thresholds. The proposed energy-based fragility framework enhances understanding of seismic demand distribution in RC 

bridge systems and offers valuable insights for the development of performance-based design and retrofitting strategies, 

contributing to the broader goal of resilient infrastructure in seismic-prone regions. 
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1. INTRODUCTION 

Reinforced concrete multi-span highway bridges are vital components of transportation networks, playing a central role in 

sustaining regional socio-economic activities and ensuring functionality during emergency response. However, their 

vulnerability to seismic events continues to be a critical concern, largely due to the complex dynamic interactions among 

structural components and the inherent uncertainties associated with earthquake ground motions. Major seismic events such as 

the 1994 Northridge (USA), 1995 Kobe, 2011 Tohoku (Japan), and 2023 Turkey-Syria earthquakes have repeatedly exposed 

the fragility of bridge infrastructure, underscoring the urgent need for more robust seismic risk assessments and resilient design 

methodologies [1]. Mitigating earthquake-induced damage requires a comprehensive understanding of seismic hazards and 

their interaction with structural systems. While conventional force- and displacement-based design approaches evaluate 

structural performance in terms of peak force and deformation, they often fail to capture the cumulative and energy-dependent 

nature of seismic demands. In contrast, energy-based seismic design offers a more holistic solution by simultaneously 

accounting for force, deformation, and energy input, thus providing a more realistic representation of structural behavior under 

seismic excitation [2]. 

The distribution and dissipation of seismic energy are central to understanding damage mechanisms in bridge components 

such as piers, bearings, shear keys, and deck connections. These energy pathways dictate how damage initiates and propagates 

across the structure. Kinetic and damping energies, which correspond to the structure's velocity-dependent response, together 

with hysteretic energy, arising from inelastic deformation, provide critical insight into how individual components contribute 

to the overall energy dissipation during seismic loading [3]. Importantly, energy-based demand parameters can differentiate 

between same components subjected to similar displacements but experiencing distinct internal forces, enabling more accurate 

assessment of serviceability and damage potential. 



 

Unlike peak-based engineering demand parameters (EDPs), which may overlook the cumulative effects of ground motion, 

energy-based EDPs offer a means of capturing the full seismic demand history. Although cumulative EDPs have been adopted 

in various studies to enhance fragility modeling [4–6], defining consistent damage state thresholds remains a challenge. 

Displacement-based EDPs, by contrast, often allow clearer threshold definition, however, may miss critical energy-related 

damage phenomena. Bridging this gap, studies such as Quinde et al. [7]  and Gentile et al. [3] have explored correlations 

between deformation- and energy-based metrics in frame systems. Their findings suggest that energy-based models, when 

linked to seismic intensity measures, can provide state-dependent fragility estimates. However, these approaches are typically 

limited to single-degree-of-freedom or frame systems and do not fully capture the distributed demands in complex bridge 

structures. 

In this context, fragility analysis serves as a probabilistic tool to quantify the likelihood of structural systems exceeding 

specific damage states under varying seismic intensities. Despite their utility, conventional fragility approaches often neglect 

the influence of seismic energy demand and dissipation, thereby reducing the robustness and reliability of vulnerability 

estimates. To address this limitation, the present study investigates the distribution and dissipation of seismic energy in RC 

multi-span highway bridges, with the objective of extending classical fragility frameworks to incorporate energy-based demand 

parameters explicitly. The findings offer improved insights into energy-driven damage processes and significantly contribute 

to refining existing seismic fragility models for critical transportation infrastructure.  

2. SEIMIC ENERGY DISTRIBUTION IN STRUCTURE 

The balance between earthquake input energy and the energy absorbed by a structure offers a straightforward way to assess 

structural behavior up to failure. Earthquake input energy (IE), which reflects the intensity of ground motion, is distributed 

within the structure as kinetic energy (KE), damping energy (DE), strain energy (SE), and hysteretic energy (HE). This energy 

balance can be represented by Eq. (1). 

 IE KE DE SE HE= + + +  (1) 

Various methods exist to compute energy components; however, this study employs the direct integration method. For 

multi-degree-of-freedom (MDOF) systems with  m and u as the mass matrix and velocity vector respectively, the 

corresponding formulations are presented herein. Kinetic energy, representing the work done by inertial forces, is defined in 

Eq. (2). 
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A portion of the energy is dissipated through damping forces and can be calculated using the expression for work done by 

inherent structural damping. If  c is the damping matrix of the system, then the damping energy is given by Eq. (3) 
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0 0

u t

DE dt= = 
T Tdu c u u c u  (3) 

The energy absorbed by the system consists of elastic strain energy and hysteretic energy. Strain energy is associated with 

the elastic response during loading and is influenced by stiffness, strength, and deformation. In contrast, hysteretic energy 

reflects the energy dissipated through inelastic behavior during cyclic loading. Both SE and HE can be estimated based on the 

component’s overall deformation response. Strain energy can be computed at any point during loading by tracking stiffness 

variations along the force-deformation curve, as expressed in Eq. (4). 
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where  tk is the tangent stiffness matrix and u is the displacement vector of the system. 

Hysteretic energy can be obtained as the difference between the total absorbed energy and the strain energy, when the 

system is under external force F , as in Eq. (5). 
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Seismic input energy is governed by structural mass and ground motion acceleration. When mass is concentrated at the 

nodes and element mass is neglected, IE can be calculated based on the interaction between ground acceleration and nodal 

mass, assuming a uniform excitation. However, this approach ignores phase delays, which can significantly affect the accuracy 

of results in large structures. For the ground motion acceleration gu ,the IE is given as follows. 
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3. FRAGILITY ANALYSIS 

Fragility functions apply reliability theory to evaluate the seismic risk of civil infrastructure by quantifying the probability 

that seismic demand (D) exceeds structural capacity (C) for a given ground motion intensity (IM) [8]. This relationship can be 

expressed mathematically as follows. 

  |Fragility P D C IM=   (7) 

Seismic demand and structural capacity are typically represented by a PSDM and predefined limit states, respectively. The 

seismic demand can be estimated using a power-law relationship, as expressed in Eq. (8). 

 ( )
b

dS a IM=  (8) 

where a and b are regression coefficients, which can be estimated from non-linear time history analysis. Following the 

lognormal distribution assumption for the capacity limit states the fragility functions of the components can be expressed as in 

Eq. (9) [9]. 
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where Sd and Sc are the medians of demand and capacity and 𝛽𝑑|𝐼𝑀 is the dispersion of the components’ PSDM. 

While component fragility is useful in identifying the most vulnerable components and retrofit decision-making, system 

fragility is more significant for transportation network risk assessments. Using the first order reliability theory, the bridge 

system can be regarded as a series or parallel system, depending on the correlation index. If all the components are considered 

completely correlated, the system failure will be governed by the most fragile component. On the other hand, if no correlation 

among component responses is considered, the system will be treated as parallel and the system failure under specific limit 

state will reach once all the components get into that particular limit state. Considering the independent failure assumption of 

different components ( )P Fi , the system wide fragility, ( )Psys F , can be derived using Eq. (10) [8]. 
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4. DESCRIPTION AND NUMERICAL MODELING OF THE BRIDGE 

The bridge in this study is representative of the multi-span continuous I-girder RC bridge class, adopted from DesRoches 

et al.  [10]. The typical span length ranges from 9 to 46 m and employs standard I-shaped girders in the superstructure. Specific 

details and analytical modeling are outlined in the following sections. 

4.1. Structural description 

A typical seat-type abutment bridge is considered in this study, reflecting common configurations in the California bridge 

inventory. Given that most I-girder bridges are two- or three-span, a three-span layout is selected, as two-span configurations 



 

have been widely studied [11]. The bridge represents median design values from the 1971–1990 design era. The central span 

is 18.29 m, which is about 1.4 times longer than the side span. Bent columns are 6.7 m tall, 0.91 m in diameter, and spaced 6.6 

m apart. Each column contains 36 #8 longitudinal bars and #4 spiral ties at 89 mm pitch. The superstructure includes seven 

girders (0.91 m deep, 0.48 m flange width) spaced at 1.68 m intervals. A 25.4 mm gap separates the deck from the abutment 

backfill, and shear keys are used to limit lateral displacement. Translational and rotational springs having stiffness values of 

140.1 x 103 kN/m and 3387 x 103 kN.m/rad respectively, are provided at the foundation to account for soil structure interaction. 

4.2. Numerical modeling 

The numerical modeling of the study bridge was conducted using OpenSees, incorporating both material and geometric 

non-linearities [12]. Material properties used in the model are summarized in Table 1. The bridge deck was modeled as an 

ElasticBeamColumn element, with mass concentrated at discrete nodes along its length. Composite section properties were 

derived from girder geometry and assigned accordingly. A schematic of the analytical model is shown in Fig.1.  

Table 1. Material properties of structural components 

Bridge component Material properties 

Bearings¹ Fy = 58.5 kN, K = 4.48 kN/mm 

Columns Unconfined concrete: f’c = 33.8 MPa, εc = 0.002, ft = 3.62 MPa, εt = 0.0002 

Confined concrete: f’c = 42.9 MPa, εc = 0.005, ft = 3.62 MPa, εt = 0.0002 

Steel: Fy = 460 MPa, Es = 2 x105 MPa, α = 0.01 

Piles¹ Fy = 124.4 kN, Fu = 177.7 kN, δy = 7.6 mm, δu = 25.4 mm 

Backfill soil² Fu = 444 kN, K = 20.5 kN/mm/m 

Shear keys¹ Fy = 142.2 kN, Fu = 203.1 kN, δy = 7.62 mm, δu = 25.4 mm 

Pounding¹ K1 = 2328.7 kN/mm, K2 = 592.39 kN/mm, Δgap = 25.4 mm, δy = 29.2 mm 
¹ The values are associated with a single component. 

² The mentioned values are per unit width of abutment. 

 

Figure 1. A three-dimensional finite element model of the target bridge 

The nonlinear concrete behavior was captured using the Concrete07 model, based on the Chang and Mander formulation, 

while Steel02 was used for reinforcing steel, accounting for isotropic hardening and the Bauschinger effect. Columns were 

modeled as displacement-based beam-column elements with fiber sections, including P-delta effects. Longitudinal interaction 

between the bridge deck and abutment leads to concentrated pressure in the backfill soil, which was modeled using 
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ZeroLengthElements with hyperbolic gap characteristics. Passive resistance from the pile-backfill system was modeled using 

a tri-linear model, following Choi [13]. Pounding at the deck-abutment interface, which is common in seat-type abutment 

bridges, was represented by using ZeroLengthElements with the ElasticPPGap material, oriented normal to the deck face [14], 

to simulate contact and separation. Isolation bearings were represented as bilinear elastoplastic ZeroLengthElements, with a 

shear modulus of 1.38 MPa and a friction coefficient of 0.4 between the concrete and bearing pad. Shear keys were modeled 

as ZeroLengthElements with hysteretic properties. 

5. GROUND MOTION SUITE 

To assess the energy characteristics of various bridge components, 269 accelerograms were selected from the K-NET and KiK-

net strong ground motion databases. These records span 35 seismic events recorded between 1996 and 2023. The acceleration 

response spectra of the selected waveforms, along with their median and standard deviation, are presented in Fig. 2 (a). The 

selection criteria for the dataset included: (1) mean peak ground acceleration (PGA) of the EW and NS components exceeding 

0.06 g, (2) moment magnitude ≥ 5.5, (3) focal dept  ≤ 70 km, and (4) average s ear wave velocity (Vs30) between 120 and 

1400 m/s. A significant portion of the records originate from the 2011 Tohoku earthquake, contributing to the high spectral 

accelerations observed in the dataset. 

 

Figure 2. (a) Acceleration response spectra for the selected records (b) Type II-II design record for deterministic analysis 

6. RESULTS AND DISCUSSION 

6.1. Seismic energy distribution for bridge components 

This section discusses the distribution of seismic energy and the contributions of various components to global structural 

energy. A gravity analysis was first performed, followed by dynamic analysis, with energy computed at each step. For 

illustration, a deterministic case using the Type II-II design waveform (Fig. 2b) recorded at JR Takatori station during the 1995 

Kobe earthquake is considered. 

Seismic energy components were calculated following the formulation in Section 2. Damping associated with bearings, 

columns, deck, piles, and soil was treated as elemental damping, while mass-proportional damping was applied at the nodal 

level. At the end of excitation, both damping and hysteretic energies plateau, while kinetic energy diminishes to zero. Fig. 3a 

shows damping energy contributions, where nodal mass damping is the most significant, contributing approximately 1570 

kN·m, followed by abutment soil with about 400 kN·m, and bearings with around 195 kN·m. In contrast, the deck and cap 

beam contribute the least, with about 16 kN·m and 2 kN·m, respectively. Hysteretic energy distribution is shown in Fig. 3b, 

with bearings contributing the majority  (~5560 kN·m) reflecting their role in isolating superstructure inertial forces. Cap beams 

and columns dissipate less energy due to their higher stiffness. The temporal profile of energy accumulation mirrors the kinetic 

energy trend (Fig. 3c), with concentration within the first 20 seconds, corresponding to the strong motion phase of the input 

accelerogram. 

At the system level, the sum of damping, hysteretic, and kinetic energies at any time equals the input seismic energy (Fig. 3d). 

The cumulative hysteretic energy, around 7500 kN·m, is roughly three times greater than the cumulative damping energy, and 

its growth closely aligns with the high-amplitude segments of the accelerogram. These findings highlight bearings as the most 

critical energy-dissipating elements, effectively limiting energy transfer to the substructure and playing a key role in structural 

resilience and post-event maintainability. 

(a) (b)



 

 

Figure 3. Seismic energy distribution for the bridge model (a) Damping energy (b) Hysteretic energy (c) Kinetic energy and 

(d) Bridge system energy. 

6.2. Bridge components and system’s fragility functions 

Following extensive nonlinear time-history analyses, the peak responses of critical components were extracted to develop 

energy-based fragility functions. Initially, energy-based EDPs were defined based on the correlation between the dissipated 

energy and peak deformation observed for each component, as summarized in Table 2. Following Ramanathan et al. [11], 

columns and deck unseating were identified as primary components due to their significant influence on the vertical stability 

of the bridge, and four limit states were defined accordingly. In contrast, bearings and shear keys, which serve as sacrificial 

elements primarily effective at moderate damage levels, were treated as secondary components. 

Fragility functions for all defined limit states across various components are presented in Fig. 4. For the column, the median 

spectral acceleration values corresponding to slight, moderate, extensive, and collapse limit states are approximately 1.36g, 

2.84g, 4.17g, and 5.27g, respectively. In contrast, the median fragility associated with deck unseating reached at lower seismic 

intensity levels, with values of 0.23g for slight and 1.61g for collapse level. As sacrificial elements, shear keys reach their 

median fragility at 0.62g for slight damage and 1.68g for collapse. The results further confirm that bearings are the most 

vulnerable components, owing to their significant role in hysteretic energy dissipation, which further contributes to triggering 

deck unseating. The relative vulnerability patterns align with the energy distribution trends presented in Fig. 3 emphasize the 

effectiveness of energy-based EDPs in capturing the cumulative structural response under seismic loading. 

Following the component-level fragility assessment, system-level fragility functions were developed for all defined limit 

states, along with their corresponding distribution parameters, as illustrated in Fig. 6. The system response appears to be 

strongly influenced by the behavior of the bearings, due to the specific formulation adopted for system-level fragility estimation. 

The median spectral acceleration values for slight, moderate, extensive, and collapse limit states are approximately 0.13g, 

0.53g, 1.27g, and 1.52g, respectively. 

(a) (b)

(d)(c)



 

Table 2. Equivalent energy-based limit states for bridge components 

Component EDP Slight  Moderate  Extensive  Collapse  

Column curvature ductility 1 [24.16]* 2 [79.10] 3.5 [142.09] 5 [224.74] 

Deck unseating (mm) 25 [5.22] 75 [98.76] 150 [255.40] 225 [380.09] 

Bearing deformation (mm) 25 [2.09] 100 [87.73] -- -- 

Shear key deformation (mm) 75 [6.58] 250 [24.26] -- -- 

*The values in brackets represent the equivalent dissipated energy (unit: kN·m) corresponding to the given deformation level 

Figure 4. PSDMs for bridge components (a) Column (b) Deck unseating (c) Bearing (d) Shear key 

Figure 5. Fragility for bridge components (a) Column (b) Deck unseating (c) Bearing (d) Shear key 

 

Figure 6. Bridge system fragility curves 

7. CONCLUSIONS 

This study presents a comprehensive energy-based seismic fragility assessment framework for RC multi-span highway 

bridges, with an emphasis on understanding energy distribution and component-level contributions to global structural 

performance. A detailed numerical model was developed , incorporating material and geometric nonlinearities, and was 

subjected to extensive nonlinear time-history analyses using real recorded ground motions. 

Energy-based engineering demand parameters were defined for key bridge components by establishing correlations 

between cumulative energy dissipation and peak deformation. The study classified components into primary (columns and deck 

unseating) and secondary (bearings and shear keys) categories, assigning appropriate limit states accordingly. Fragility 

(a) (b) (c) (d)
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functions were developed at both component and system levels. The results indicate that bearings are the most vulnerable 

components, primarily due to their significant role in hysteretic energy dissipation. Deck unseating was observed to reach at 

lower seismic intensities compared to column damage, emphasizing the importance of proper isolation and restraint design. 

System-level fragility was predominantly influenced by bearing response, with median spectral acceleration values of 0.13g, 

0.53g, 1.27g, and 1.52g corresponding to slight, moderate, extensive, and collapse limit states, respectively. The proposed 

energy-based fragility framework effectively captures the cumulative effects of seismic loading and offers a more holistic 

understanding of bridge performance under strong ground motions. Future research should focus on experimental validation of 

energy dissipation thresholds for various components and extend the approach to multiple bridge classes to develop a 

generalized framework. These findings provide valuable guidance for performance-based seismic design, retrofit prioritization, 

and resilience planning of critical bridge infrastructure in seismically active regions. 

REFERENCES 

[1] Rashid M, Nishio M. Mainshock–afters ock seismic fragility assessment of civil structures:   state‐of‐t e‐art review. 

Earthquake Engineering and Resilience 2024;3:548–73. https://doi.org/10.1002/eer2.105. 

[2] Jamnani HH, Amiri JV, Rajabnejad H. Energy distribution in RC shear wall-frame structures subject to repeated 

earthquakes. Soil Dynamics and Earthquake Engineering 2018;107. https://doi.org/10.1016/j.soildyn.2018.01.010. 

[3] Gentile R, Galasso C. Hysteretic energy-based state-dependent fragility for ground-motion sequences. Earthq Eng 

Struct Dyn 2021;50. https://doi.org/10.1002/eqe.3387. 

[4]  ang   ‐M,  ertero V V.  valuation of seismic energy in structures.  art q  ng Struct  yn 1990;19. 

https://doi.org/10.1002/eqe.4290190108. 

[5] Kunnath SK, Chai YH. Cumulative damage-based inelastic cyclic demand spectrum. Earthq Eng Struct Dyn 2004;33. 

https://doi.org/10.1002/eqe.363. 

[6] Chai YH. Incorporating low-cycle fatigue model into duration-dependent inelastic design spectra. Earthq Eng Struct 

Dyn 2005;34. https://doi.org/10.1002/eqe.422. 

[7] Quinde P, Terán-Gilmore A, Reinoso E. Cumulative Structural Damage Due to Low Cycle Fatigue: An Energy-Based 

Approximation. Journal of Earthquake Engineering 2021;25. https://doi.org/10.1080/13632469.2019.1692736. 

[8] Nielson BG. Analytical fragility curves for highway bridges in moderate seismic zones. Georgia Tech, 2005. 

https://doi.org/10.1016/j.engstruct.2017.03.041. 

[9] Choi E, DesRoches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones. Eng Struct 

2004;26:187–99. https://doi.org/10.1016/j.engstruct.2003.09.006. 

[10] DesRoches R, Padgett J, Ramanathan K, Dukes J. Feasibility Studies for Improving   altrans’  ridge Fragility 

Relationships . California: 2012. 

[11] Ramanathan K, Padgett JE, DesRoches R. Temporal evolution of seismic fragility curves for concrete box-girder 

bridges in California. Eng Struct 2015;97:29–46. https://doi.org/10.1016/j.engstruct.2015.03.069. 

[12] McKenna F. OpenSees: A framework for earthquake engineering simulation. Comput Sci Eng 2011;13. 

https://doi.org/10.1109/MCSE.2011.66. 

[13] Choi E. Seismic analysis and retrofit of mid-America bridges. 2002  2002 . 

[14] Muthukumar S, DesRoches R. A Hertz contact model with non-linear damping for pounding simulation. Earthq Eng 

Struct Dyn 2006;35. https://doi.org/10.1002/eqe.557. 

  


